

Synthesis of Realistic Tongue Movements for Speech Animation using Gated Recurrent Units

Jake G Mwangi-Powell¹, Robert Kosk², Tianxiang Yang^{1,2}, Cathair Kerrigan², Marco Volino¹

jakemwangipowell@gmail.com, {robert, cathair}@humain-studios.com, {y.tianxianq, m.volino}@surrey.ac.uk

¹University of Surrey, ²Humain Studios

Motivation

- Speech animation has long focused on lip-sync and facial movements, neglecting the tongue's role in articulation, which is critical for achieving realistic character animations [2].
- Machine learning has shown potential in speech animation [3]; however, these techniques have not been fully utilised for tongue synthesis.

Contribution

- This paper presents a method for synthesising realistic tongue movements from speech inputs using machine learning, specifically Gated Recurrent Units (GRUs).
- By leveraging a dataset of Electro-Magnetic Articulography (EMA) [1], various neural architectures, such as Long Short-Term Memory (LSTM) networks, transformers, and GRUs are evaluated.

Methodology Speech Data **Tested Network Architectures** LSTM Wave2Vec Bi-LSTM 2.0 Transformer GRU EMA sensor data Predictions are mapped to EMA 2 an animation rig of the jaw and tongue. Position Tongue MoCap Dataset [1] Maya Figure 1: Methodology Overview

Results

Table 1: Comparing model architectures

Model Architecture	MSE
LSTM	2.267
Bi-LSTM	1.715
Transformer	2.216
GRU	1.688

Table 2: GRU hidden dimension

Hidden Dimension	MSE
64	1.751
128	1.688
256	1.598
512	1.638

Table 3: GRU hidden dimension

Number of Layers	MSE
2	1.715
3	1.598
4	1.559
5	1.674

Predicted vs Actual Values

Predicted vs Actual Values

Predicted vs Actual Values

Actual Values

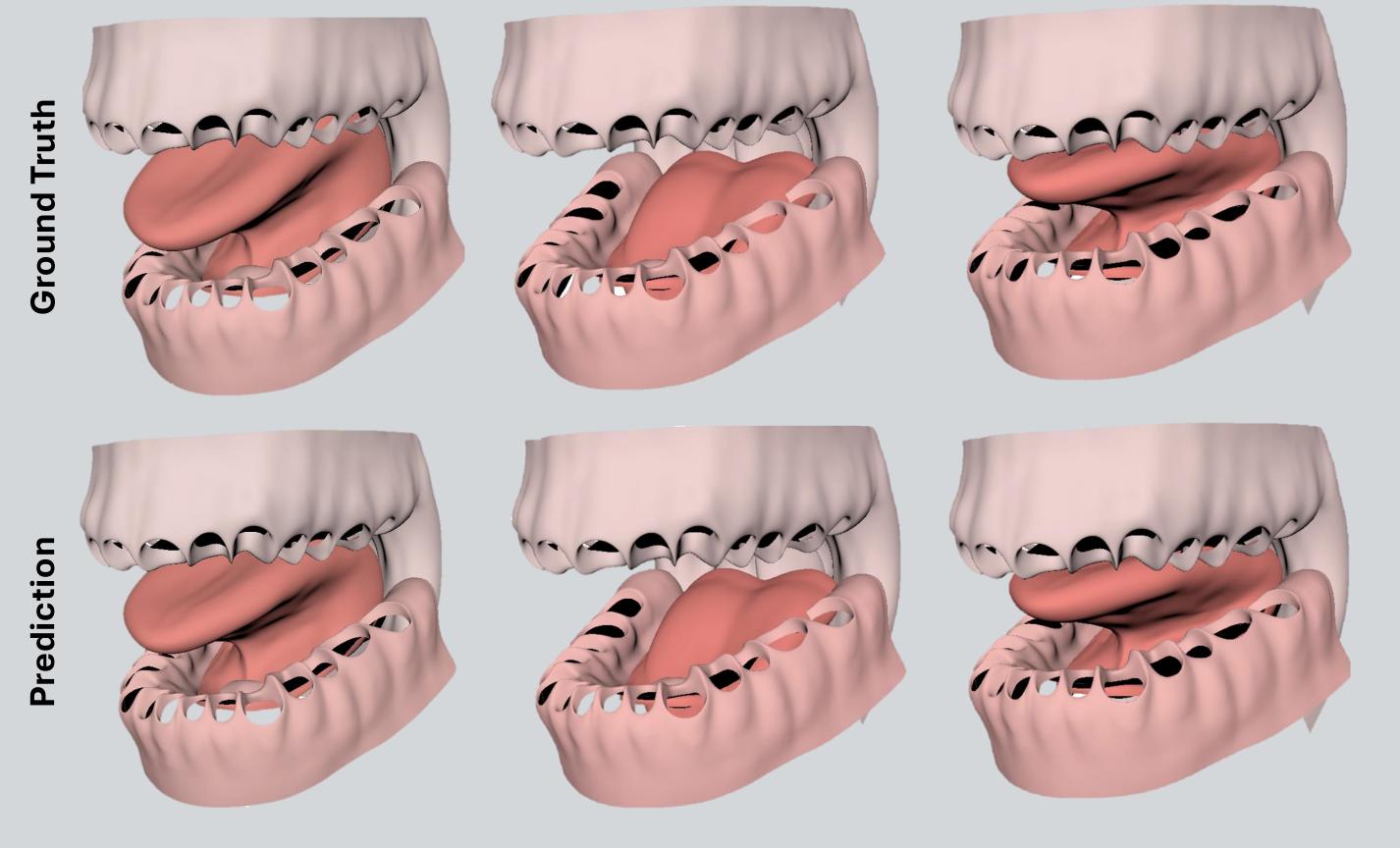


Figure 3: Model output given unseen audio as input.

Note teeth have been removed for better visibility of the tongue

Conclusions

- This work successfully developed a GRU-based approach for synthesising realistic tongue movements from speech inputs.
- The proposed method has the potential to enhance the realism of speech animations in digital characters, with applications in fields such as gaming, film, and VR.

References

- 1.S. Medina, D. Tome, C. Stoll, M. Tiede, K. Munhall, A. Hauptmann, and I. Matthews. Speech driven tongue animation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
- 2.A. Siarohin, O. J. Woodford, J. Ren, M. Chai, and S. Tulyakov. Motion representations for articulated animation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- 3.P. Zhu, L. Xie, and Y. Chen. Articulatory movement prediction using deep bidirectional long short-term memory based recurrent neural networks and word/phone embeddings. In Interspeech 2015.